skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nyadjro, Ebenezer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The challenges facing the ocean and its resources have become increasingly complex and transboundary, requiring coordinated efforts for effective management and sustainable use. However, this coordination is currently hindered by the uneven distribution of capacity and equipment, particularly in developing regions. This article discusses project-based learning (PBL) as a pathway to transferring and sharing capacity in global ocean sciences. It highlights a successful PBL program, as well as challenges encountered and lessons learned. Addressing these obstacles is crucial for ensuring equity in solving issues that impact the ocean. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. One of the biggest barriers to conducting ocean science around the globe is limited access to computational tools and resources, including software, computing infrastructure, and data. Open tools, such as open-source software, open data, and online computing resources, offer promising solutions toward more equitable access to scientific resources. Here, we discuss the enabling power of these tools in under-resourced and non-English speaking regions, based on experience gained in the organization of three independent programs in West African, Latin American, and Indian Ocean nations. These programs have embraced the “hackweek” learning model that bridges the gap between data science and domain applications. Hackweeks function as knowledge exchange forums and foster meaningful international and regional connections among scientists. Lessons learned across the three case studies include the importance of using open computational and data resources, tailoring programs to regional and cultural differences, and the benefits and challenges of using cloud-based infrastructure. Sharing capacity in marine open data science through the regional hackweek approach can expand the participation of more diverse scientific communities and help incorporate different perspectives and broader solutions to threats to marine ecosystems and communities. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. The Coastal Ocean Environment Summer School In Nigeria and Ghana (COESSING; https://coessing.org) has been run for one week every year since 2015. The school, an endorsed project of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030), has provided a platform for approximately 1,000 scientists from Africa, the United States, and Europe to exchange scientific knowledge, to network, to learn, and to collaborate. Our interdisciplinary, multicultural, and multi-institutional approach offers a model for knowledge exchange across the globe and across different educational levels. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. AbstractOceanography is by nature a global science, and thus requires a global trained workforce. Yet in many coastal nations, the number of trained professionals working in ocean science fields is lacking. Global Ocean Corps and Conveyor (GOCC), an endorsed capacity development programme of the UN Decade of Ocean Science for Sustainable Development, aims to increase the geographical and cultural diversity of the ocean science workforce through facilitating and building sustained long-term education and research collaborations between scientists around the globe. Based upon our collective experience with schools and workshops held in Ghana, Malaysia, University of Rhode Island Coastal Resources Center, and elsewhere, we are confident that a well-funded Ocean Corps would inspire large numbers of scientists, especially early-career scientists, into its ranks, thus molding many of them into champions for international capacity development for the remainder of their careers, and fostering truly global ocean science collaborations worldwide. 
    more » « less
  5. Abstract High-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere–ocean model simulations, an assimilative coupled atmosphere–ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514–12522, 2018.https://doi.org/10.1029/2018GL078926) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2–100 days) that are still relatively “high-frequency” in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching the values derived from observations. Mesoscale-eddy-rich ocean simulations significantly increase precipitation variance only when the atmosphere grid spacing is sufficiently fine (< 0.5°). Despite the improvements noted above, all of the simulations examined here suffer from the “drizzle effect”, in which precipitation is not temporally intermittent to the extent found in observations. 
    more » « less